Пиши статьи - зарабатывай вместе с нами! Хочу!

Нахождение дискриминанта, формула, сравнение с нулём

+1+2+3+4+5
Загрузка...
Нахождение дискриминанта, формула, сравнение с нулём

Комментариев: 0
Автор:

Дискриминант – многозначный термин. В данной статье речь пойдёт о дискриминанте многочлена, который позволяет определить, есть ли у данного многочлена действительные решения. Формула для квадратного многочлена встречается в школьном курсе алгебры и анализа. Как найти дискриминант? Что нужно для решения уравнения?

Квадратный многочлен, как искать его корни

Квадратным многочленом или уравнением второй степени называется i * w ^ 2 + j * w + k равный 0, где “i” и “j” – первый и второй коэффициент соответственно, “k” – константа, которую иногда именуют “свободным членом”, а “w” – переменная. Его корнями окажутся все значения переменной, при которых оно превращается в тождество. Такое равенство допустимо переписать, как произведение i, (w – w1) и (w – w2) равное 0. В этом случае очевидно, что если коэффициент “i” не обращается в ноль, то функция в левой части станет нулевой только в случае, если x принимает значение w1 или w2. Эти значения являются результатом приравнивания многочлена к нулю.

Для нахождения значения переменной, при котором квадратный многочлен обращается в ноль, используется вспомогательная конструкция, построенная на его коэффициентах и названная дискриминантом. Эта конструкция рассчитывается согласно формуле D равняется j * j – 4 * i * k. Зачем она используется?

  1. Она говорит, имеются ли действительные результаты.
  2. Она помогает их высчитать.

Как это значение показывает наличие вещественных корней:

  • Если оно положительное, то можно найти два корня в области действительных чисел.
  • Если дискриминант равен нулю, то оба решения совпадают. Можно сказать, что есть всего одно решение, и оно из области вещественных чисел.
  • Если дискриминант меньше нуля, то у многочлена отсутствуют вещественные корни.

Варианты расчётов для закрепления материала

Для суммы {7 * w ^ 2; 3 * w; 1} равной 0 рассчитываем D по формуле 3 * 3 – 4 * 7 * 1 = 9 – 28 получаем -19. Значение дискриминанта ниже нуля говорит об отсутствии результатов на действительной прямой.

Если рассмотреть 2 * w ^ 2 – 3 * w + 1 эквивалентный 0, то D рассчитывается как (-3) в квадрате за вычетом произведения чисел {4; 2; 1} и равняется 9 – 8, то есть 1. Положительное значение говорит о двух результатах на вещественной прямой.

Если взять сумму {w ^ 2; 2 * w; 1} и прировнять к 0, D рассчитается, как два в квадрате минус произведение чисел {4; 1; 1}. Это выражение упростится до 4 – 4 и обратится в ноль. Выходит, что результаты совпадают. Если внимательно вглядеться в данную формулу, то станет понятно, что это “полный квадрат”. Значит, равенство можно переписать в форме (w + 1) ^ 2 = 0. Стало очевидно, что результат в этой задаче “-1”. В ситуации если D равен 0, левую часть равенства всегда получится свернуть по формуле “квадрат суммы”.

Использование дискриминанта в вычислении корней

Эта вспомогательная конструкция не только показывает количество вещественных решений, но и помогает их находить. Общая формула расчёта для уравнения второй степени такова:

w = (-j +/- d) / (2 * i), где d – дискриминант в степени 1/2.

Допустим, дискриминант ниже нулевой отметки, тогда d – мнимо и результаты мнимые.

D нулевой, тогда d, равный D в степени 1/2, тоже нулевой. Решение: -j / (2 * i). Снова рассматриваем 1 * w ^ 2 + 2 * w + 1 = 0, находим результаты эквивалентные -2 / (2 * 1) = -1.

Предположим, D > 0, значит, d – вещественное число, и ответ здесь распадается на две части: w1 = (-j + d) / (2 * i) и w2 = (-j – d) / (2 * i). Оба результата окажутся действительные. Взглянем на 2 * w ^ 2 – 3 * w + 1 = 0. Здесь дискриминант и d – единицы. Выходит, w1 равняется (3 + 1) делить (2 * 2) или 1, а w2 равен (3 – 1) делить на 2 * 2 или 1/2.

Результат приравнивания квадратного выражения к нулю вычисляется согласно алгоритму:

  1. Вычисление дискриминанта.
  2. Определение количества действительных решений.
  3. Вычисление d = D ^ (1/2).
  4. Нахождение результата в соответствии с формулой (-j +/- d) / (2 * i).
  5. Подстановка полученного результата в исходное равенство для проверки.

Некоторые частные случаи

В зависимости от коэффициентов решение может несколько упрощаться. Очевидно, что если коэффициент перед переменной во второй степени равен нулю, то получается линейное равенство. Когда коэффициент перед переменной в первой степени нулевой, то возможны два варианта:

  1. многочлен раскладывается в разность квадратов при отрицательном свободном члене;
  2. при положительной константе действительных решений найти нельзя.

Если свободный член нулевой, то корни будут {0; -j}

Но есть и другие частные случаи, упрощающие нахождение решения.

Приведенное уравнение второй степени

Приведенным именуют такой квадратный трёхчлен, где коэффициент перед старшим членом – единица. Для данной ситуации применима теорема Виета, гласящая, что сумма корней равняется коэффициенту при переменной в первой степени, помноженному на -1, а произведение соответствует константе “k”.

Следовательно, w1 + w2 равно -j и w1 * w2 равняется k, если первый коэффициент — единица. Чтобы убедиться в правильности такого представления, можно выразить из первой формулы w2 = -j – w1 и подставить его во второе равенство w1 * (-j – w1) = k. В итоге получается исходное равенство w1 ^ 2 + j * w1 + k = 0.

Важно отметить, что i * w ^ 2 + j * w + k = 0 удастся привести путём деления на “i”. Результат будет: w ^ 2 + j1 * w + k1 = 0, где j1 равно j / i и k1 равно k / i.

Взглянем на уже решенное 2 * w ^ 2 – 3 * w + 1 = 0 с результатами w1 = 1 и w2 = 1/2. Надо поделить его пополам, в итоге w ^ 2 – 3/2 * w + 1/2 = 0. Проверим, что для найденных результатов справедливы условия теоремы: 1 + 1/2 = 3/2 и 1*1/2 = 1/2.

Чётный второй множитель

Если множитель при переменной в первой степени (j) делится на 2, то удастся упростить формулу и искать решение через четверть дискриминанта D/4 = (j / 2) ^ 2 – i * k. получается w = (-j +/- d/2) / i, где d/2 = D/4 в степени 1/2.

Если i = 1, а коэффициент j – чётный, то решением будет произведение -1 и половины коэффициента при переменной w, плюс/минус корень из квадрата этой половины за вычетом константы “k”. Формула: w = -j / 2 +/- (j ^ 2 / 4 – k) ^ 1/2.

Более высокий порядок дискриминанта

Рассмотренный выше дискриминант трёхчлена второй степени – это наиболее употребимый частный случай. В общем же случае дискриминант многочлена представляет собой перемноженные квадраты разностей корней этого многочлена. Следовательно, дискриминант равный нулю говорит о наличии как минимум двух кратных решений.

Рассмотрим i * w ^ 3 + j * w ^ 2 + k * w + m = 0.

D = j ^ 2 * k ^ 2 – 4 * i * k ^ 3 – 4 * i ^ 3 * k – 27 * i ^ 2 * m ^ 2 + 18 * i * j * k * m.

Допустим, дискриминант превосходит ноль. Это значит, что имеется три корня в области действительных чисел. При нулевом есть кратные решения. Если D < 0, то два корня комплексно-сопряженные, которые дают отрицательное значение при возведении в квадрат, а также один корень – вещественный.

Не получили ответ на свой вопрос? Предложите авторам тему:


Отзывы и комментарии

Рекомендуем