Ещё во времена Аристотеля существовало представление о внутренней теплоте, присущей каждому телу и являющейся одним из его первичных качеств. В VII веке Декарт и Бэкон в своих трудах попытались связать движение частиц тела с его теплотой. Англичанин Джоуль в своих опытах изучал превращение механической энергии в тепловую энергию нагрева воды. Груз опускался с определённой высоты, приводя в движение мешалку в ёмкости с водой. Температура воды при перемешивании увеличивалась.

Первый закон термодинамики

Первый закон термодинамики утверждает, что энергия не появляется ниоткуда и не исчезает в никуда. Она переходит из одного вида в другой. Опыты Джоуля показали эквивалентность механической работы и теплоты.

Чтобы получить электричество, в топках котлов на электростанциях сжигается топливо, химическая энергия преобразуется в тепловую и передаётся через поверхности нагрева рабочему телу — воде, вода превращается в пар, поступающий на лопатки турбин, где тепловая энергия пара переходит в механическую энергию вращения ротора, а затем в генераторах турбин производится электроэнергия.

На атомных электростанциях внутренняя энергия урана превращается в тепловую энергию воды в охлаждающем контуре. На гидроэлектростанциях потенциальная энергия воды переходит в механическую энергию гидротурбин, затем в генераторах также преобразуется в электрическую.

Если котёл паровой, то на выходе из котла образуется пар, в водогрейных котлах вода нагревается до определённой температуры.

Работающая ТЕЦ

Передача тепловой энергии

Определение количества теплоты является задачей термодинамики. Это понятие сравнимо с работой, которую выполняет рабочее тело, в рассматриваемом случае — вода.

Правильнее сказать, что рабочему телу сообщается количество теплоты. Теплота передаётся тремя способами:

  1. лучистой энергией, радиацией;
  2. конвекцией;
  3. теплопроводностью.

В процессе теплового излучения в котлах топливо подаётся через горелки в топку. При горении топлива химическая энергия превращается в тепловую энергию раскалённых газов. Эта тепловая энергия через лучистый теплообмен передаётся поверхностям нагрева котла.

При прохождении газов из топки по конвективным поверхностям котельной установки их температура снижается и теплообмен происходит большей частью конвекцией.

Через стенки поверхностей нагрева котла тепло за счёт теплопроводности передаётся рабочему телу, т. е. воде или водяному пару.

Вид на станцию с улицы

Единица тепла в разных системах измерения

Для оценки эффективности работы тепловых электростанций необходимо соизмерять химическую энергию топлива, сжигаемого в котлах, с количеством электрической энергии, вырабатываемой электростанцией.

Единицы измерения тепла:

  1. калория;
  2. джоуль.

Исторически сложилось, что за единицу теплоты в технической системе единиц была принята 1 калория, то тепло, которое необходимо для нагрева одного грамма воды на один градус Цельсия. Из курса физики известно, что количество тепла определяется по формуле:

Q = M*C* (t2-t1), где

  • M — количество вещества, масса, в граммах;
  • С — теплоёмкость, то количество тепла, которое необходимо сообщить единице вещества, чтобы поднять его температуру на один градус. В технической системе единиц теплоёмкость воды приравнена к одной калории/(грамм*град);
  • T1— температура воды до нагревания, в градусах Цельсия;
  • T2— температура воды после нагревания, в градусах Цельсия.

В дальнейшем потребовалось унифицировать перевод механической энергии в тепловую, нужна была более совершенная единица измерения. Однако в силу инерционного мышления калория прочно вошла в наш обиход. Даже энергетическая ценность продуктов измеряется в калориях.

В международной системе единиц СИ за единицу теплоты принят 1 Дж.

Джоуль — работа, совершаемая силой в один ньютон на пути перемещения в один метр.

1 ньютон = M*A = кг*м/(сек*сек), где

  • M — масса, кг;
  • А — ускорение, м/(сек*сек) = м/сек2.

За 1 джоуль в теплотехнике принято количество теплоты, эквивалентное работе в 1 Дж.

Джоуль, отнесённый к единице массы или объёма, даёт характеристику объёмной теплотворности топлива.

Теплоёмкость в Международной системе единиц измеряется в Дж/(кг*град), для воды теплоёмкость равна 4,19 Дж/(грамм*град).

Перевод из одной системы измерения тепла в другую:

  • 1 Кал = 4,1868 Дж;
  • 1 Дж = ¼, 1868 = 0,239 Кал.

Часто пытаются связать между собой совершенно разные единицы измерения: количество теплоты, измеряемое в Гкал, с мощностью, измеряемой в МВт. Это всё равно, как если бы связали морские мили, пройденные судном, с его скоростью в узлах.

В мегаватты можно перевести только тепловую мощность, измеряемую в Гкал/час. Ниже мы даём расчёт коэффициента перевода.

Мегаватт — единица измерения мощности в Международной системе единиц и равна 1 МДж/1сек.

Приставка Мега обозначает миллион, или 1 МДж = 1000000 Дж, приставка Гига обозначает миллиард, или 1 Гкал = 1000000000 кал.

Тепловая мощность в технической системе единиц обозначает единицу теплоты, сообщённой рабочему телу в единицу времени, 1 Гкал /1 час

Переводим тепловую мощность в мегаватты:

  • 1 Гкал/час = 4,1868*1000000000Дж/3600 сек = 1163000 Дж/сек = 1,163 МДж/сек = 1,163 МВт;
  • или 1 МВт = 1/1,163 = 0,860 Гкал/час.

Этот коэффициент часто фигурирует в эмпирических формулах с теплотехникой.