Когда мы говорим о химии, мы подразумеваем строительные блоки Вселенной. Все элементы действуют как кирпичи конструктора Лего, присоединяясь друг к другу, пока не создадут нечто большее, например, металлы, воду, химические соединения и даже живых существ. Иногда они не стыкуются и разваливаются или взрываются, ухудшая свои основные формы. Именно эти связи и реакции составляют Вселенную, какой мы ее знаем и видим.
Хотя все вещи на нашей планете состоят из отдельных атомов и элементов, различия между объектами и видами заключаются в способности элементов сочетаться с другими элементами. Как вы, наверное, уже знаете, валентность элемента измеряет его способность сочетаться с другими, а число электронов внутри внешней оболочки элемента называется валентностью.
Содержание:
Как определить валентность элемента
Для этого существует несколько методов. Первый и самый простой способ - это просто обратиться к периодической таблице Менделеева. Элементы распределены по группам, их 8. В каждой группе они имеют одинаковую валентность. Например, все элементы в группе 8 имеют восемь электронов (высокая стабильность).
Второй метод — посмотреть на общее количество электронов, а затем вычислить их число по атомному номеру. Как только вы узнаете количество электронов, вы можете легко вычислить валентность. Все атомы, кроме водорода, имеют два электрона в первой электронной оболочке и до восьми в каждой последующей. Например, атомный номер хлора равен 17, что делает конфигурацию электронов равной:
- 2;
- 8;
- 7.
То есть валентность хлора равна 7. Кислород имеет восемь электронов, два в первой оболочке и шесть во внешних оболочках, давая ему число 2. Вы можете рассчитать многоэлементные молекулы таким же образом. Например, чтобы определить тетраоксид фосфора, вы должны умножить атомы кислорода (валентность 2) и вычесть из валентности фосфора 5, получив число 3.
Ознакомьтесь с электронной конфигурацией каждого уровня оболочки. Каждый атом имеет два электрона на своей внутренней оболочке и до восьми электронов на каждой оболочке. Например, поскольку литий имеет три электрона, он будет иметь два внутри и один электрон на своей внешней оболочке.
Правило октета
При определении атома или молекулы (для которой вы не можете использовать периодическую таблицу), химики используют правило октета. Согласно этому правилу, атомы и химические вещества объединяются таким образом, чтобы образовать восемь электронов во внешней оболочке любого соединения, которое они образуют. Когда атом или молекула имеет от одного до четырех электронов в своей внешней оболочке, он имеет положительную валентность, то есть он жертвует свои свободные электроны. Когда число электронов составляет:
- четыре;
- пять;
- шесть;
- семь;
- вы определяете его способности путем вычитания электронного числа из 8. Это потому, что атом или молекула легче принимает электроны для достижения стабильности.
Определение по таблице Менделеева
Ученые устроили все элементы в диаграмму, называемую периодической таблицей, и во многих случаях вы можете определить валентность, взглянув на график. Например, все металлы в колонке 1, включая водород и литий, имеют +1, тогда как все те, что указаны в колонке 17, включая фтор и хлор, имеют -1. Благородные газы в колонке 18 имеют 0 и являются инертными.
С помощью этого метода вы не можете найти валентность меди, золота или железа, потому что у них много активных электронных оболочек. Это справедливо для всех переходных металлов в колонках 3–10, более тяжелых элементов в колонках с 11 по 14, лантаноидов (элементы 57–71) и актинидов (элементы 89–103).
Определение зависимости от химических формул
Вы можете определить переходный элемент или радикал в конкретном соединении, заметив, как он сочетается с элементами известной валентности. Эта стратегия основана на правиле октета, которое говорит нам о том, что элементы и радикалы объединяются, чтобы создать стабильную внешнюю оболочку из восьми электронов.
В качестве простых иллюстраций этой стратегии обратите внимание, что натрий (Na), имеющий +1, легко сочетается с хлором (Cl), который имеет -1, с образованием хлорида натрия (NaCl) или поваренной соли. Это пример ионной реакции, в которой электрон пожертвован одним атомом и принят другим. Однако для соединения с серой (S) требуется два атома натрия с образованием сульфида натрия (Na2S), сильнощелочной соли, используемой в целлюлозной промышленности.
Чтобы применить эту стратегию к более сложным молекулам, важно сначала понять, что элементы иногда объединяются с образованием реактивных радикалов, которые еще не достигли стабильности внешней оболочки. Примером является сульфатный радикал (SO4). Это тетраэдрическая молекула, в которой атом серы разделяет электроны с четырьмя атомами кислорода в так называемой ковалентной связи. В таком соединении вы не можете получить валентность атомов в радикале, если посмотреть на формулу. Поскольку для образования этого соединения требуется два атома натрия, валентность серы должна быть -2.
Однако вы можете определить радикал с помощью ионных соединений, которые он образует. Например, сульфатный радикал объединяется ионно с водородом, образуя серную кислоту (H2SO4). Эта молекула содержит два атома водорода, каждая из которых имеет +1, поэтому в этом случае валентность радикала равна -2. Как только вы определили радикал, вы можете использовать ее для вычисления молекул, с которыми он объединяется.
Например, железо (Fe) представляет собой переходный металл, который может проявлять множественные валентности. Когда он сочетается с сульфатным радикалом с образованием сульфата железа, FeSO4, он должен иметь +2 поскольку сульфатный радикал, определяется по связи, которую он образует с водородом.
Видео
Из этого видео вы узнаете, как определять валентность элементов по формулам.