Часто бывает необходимо вычислить площадь той или иной геометрической фигуры. Если дело обстоит с прямоугольником или квадратом, то тут все более-менее ясно: формулы для их площадей интуитивно просты и понятны, а также легко запоминаются. Но как быть, если речь идет о каком-нибудь треугольнике, для вычисления площади которого простого перемножения сторон недостаточно. Тогда на помощь приходит она, госпожа Математика…

Что такое треугольник и какие бывают треугольники?

Вспомним определение из школьного курса геометрии: «Треугольником АВС называется фигура, состоящая из трех точек, не лежащих на одной прямой, и соединенных между собой отрезками». Точки А, В и С будут вершинами, а отрезки АВ, ВС и АС — сторонами треугольника. Треугольник АВС кратко записывают так: ∆ABC.

Треугольники бывают правильные, когда все их стороны равны. По-другому их еще называют равносторонними. Также есть равнобедренные, когда только две стороны одинаковы, и прямоугольные, когда один из углов — прямой.

Вычисление площади треугольника по трем сторонам. Формула Герона

Можно долго описывать свойства биссектрисы или медианы треугольника, однако, у нас другая задача: можно ли, зная длины всех сторон ∆АВС, найти его площадь? Такая необходимость возникает, если мы измерили три стороны треугольника, а углы нам неизвестны. Конечно, можно. Уже в I веке нашей эры была известна замечательная формула, позволяющая без проблем находить площади любых треугольников только по трем сторонам.

Эта формула, ныне известная как формула Герона (по имени древнегреческого ученого Герона Александрийского, жившего в I веке н. э., в чьей книге под названием «Метрика» эту формулу и обнаружили), была открыта знаменитым Архимедом. Она очень проста и сводится к следующему:

Площадь любого треугольника ABC со сторонами a, b и с определяется формулой Герона:

S=√p (p-a)(p-b)(p-c), где p=(a+b+c)/2 — полупериметр ∆ABC.

Как вычислить площадь треугольника

Как получить формулу Герона?

Как же была получена столь замечательная формула? Все очень просто. Если вы запасетесь небольшим терпением, то сами сможете убедиться, как же легко можно прийти к формуле Герона. Для этого поднимите из памяти на свет вашего разума известные со школьной скамьи теоремы синусов и косинусов. Как они звучат?

Теорема синусов: «Отношения сторон ∆ABC к синусам противолежащих им углов равны:

a/sin α=b/sin β=c/sin γ, где α, β и γ — углы ∆АВС, противолежащие сторонам а, b и с соответственно».

Теорема косинусов: «Квадрат стороны ∆ABC равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними: a²=b²+c²-2bc•cos α».

Используя их, вы сами придете к желаемому результату, как это сделал много веков назад знаменитый математик. Вот вам небольшая подсказка: используйте формулу площади ∆ABC подвум сторонам и углу между ними. Удачи!

Вариации формулы Герона

Существуют и другие формы записи этой формулы. Вот они:

  • S=¼•√((a²+b²+c²)²-2 (a⁴+b⁴+c⁴));
  • S=¼•√(2 (a²b²+a²c²+b²c²)-(a⁴+b⁴+c⁴));
  • S=¼•√((a+b-c)(a-b+c)(-a+b+c)(a+b+c));
  • S=¼•√(4a²b²-(a²+b²-c²)²).

Еще формулы для вычисления площади треугольника:

  • S=½•ab•sin γ, где γ — угол между ст-нами a и b;
  • S=½•a²/(ctg β+ctg γ), где β и γ — углы, прилежащие к ст-не а;
  • S=½•ah, где h — высота, опущенная на ст-ну а;
  • S=½•ab, если ∆ABC — прямоугольный;
  • S=¼•a²√3, если ∆ABC — равносторонний со ст-ной а;
  • S=½•а²•sin φ, если ∆ABC — равнобедренный с боковыми ст-нами, а и углом φ между ними.

Как найти площадь по сторонам

Примеры

Эти примеры помогут вам лучше освоить тему:

Пример №1

Вычислить площадь ∆АВС, если a=10, в=20, c=30. Решение. Находим полупериметр: p=(10+20+30)/2=30. Теперь по формуле Герона: S=√(30•(30−10)•(30−20)•(30−30))=0, т. е. на самом деле мы имеем дело не с треугольником, а с отрезком, у которого с=а+b=10+20=30.

Пусть а=3, в=5, c=6, тогда p=(3+5+6)/2=7. Искомая площадь S=√(7•(7−3)•(7−5)•(7−6))=√(7•4•2•1)=√56≈7,48.

Пример №2

Найти угол γ между сторонами треугольника a и в из предыдущей задачи. Решение. S=(aв/2)•sin γ, sin γ=2S/(aв)=2•√56/(3•5)=0,99778, γ=arcsin 0,99778≈86°.

Пример №3

Пусть даны координаты вершин ∆ABC: А (1,2), В (-1,3), С (2,-5). Найти его площадь по одной из формул. Решение. Находим длины его сторон: AB=√((-1−1)²+(3−2)²)=√5, BC=√((2-(-1))²+(-5−3)²)=√73, AC=√((2−1)²+(-5−2)²)=√50. Тогда S=¼•√(4•5•73-(5+73−50)²)=¼•√676=26/4=6,5.

Пример №4

Периметр равностороннего треугольника численно равен его площади. Чему равна его сторона а? Решение. Так как периметр равностороннего треугольника равен Р=3а, а его площадь S=¼•a²√3, то приравняв эти равенства, получим: 3а=¼•а²√3. Решив это уравнение, найдем: а=4√3.

Пример №5

Площадь круга радиусом R равна площади равностороннего ∆ABC. Найти радиус круга. Решение. Площадь круга S=πR² по условию задачи равна площади равностороннего ∆ABC: πR²=¼•а²√3. Из этого соотношения находим: R=а√(√3)/(2√π)≈0,3713а.

Пример №6

Сторона и два прилежащих к ней угла в ∆ABC равны соответственно а=7, β=30°, γ=60°. Чему равна его площадь? Решение. S=½•7²/(ctg 30°+ctg 60°)=(49/2)/(√3+1/√3)=49√3/8≈10,61.

Видео

Это видео поможет вам закрепить материал, изложенный в статье.